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Abstract. We present new next-to-leading-order (NLO) sets of parton distributions in real photons based
on a scheme-invariant definition of the non-perturbative input. We compare the theoretical predictions
with LEP data and a best fit allows us to constrain the parameters of the distributions. The shape of the
gluon distribution is poorly constrained and we consider the possibility to measure it in photoproduction
experiments. Three parameterizations that aim to take into account the scattering of the LEP data are
proposed and compared to other NLO parameterizations.

1 Introduction

Since the early days of quantum chromodynamics (QCD),
the photon structure function has attracted much interest,
and the pioneering work of Witten [1] triggered a large
number of theoretical and experimental studies [2]. Recent
developments are well reviewed in [3, 4]. The present sit-
uation is characterized by much recent data, essentially
accumulated by LEP experiments, by the possibility to
observe the photon structure function in photoproduction
experiments at HERA [5], and by the necessity to have
accurate predictions for the Next Linear Collider (NLC).
These three reasons justify an upgrading of the Aurenche–
Fontannaz–Guillet (AFG) parameterization of quark and
gluon distributions in the photon that we proposed ten
years ago [6].

The next-to-leading-order (NLO) AFG parameteriza-
tion was characterized by a non-perturbative input, defined
in a factorization-scheme-invariant way, and by a parame-
ter Q2

0 fixing the starting point of the Q2 evolution of the
perturbative component.With the choiceQ2

0 = 0.5 GeV2 (a
value close to the ρ-mass squared) and a non-perturbative
input determined within the framework of the vector dom-
inance model (VDM) we found good agreement with data.

Data on the photon structure function essentially de-
termine the quark content of the photon. On the other
hand the gluon content can be constrained in photoprod-
uction reactions at HERA [5,7] and the AFG gluon distri-
bution appears to be in agreement with recent data on jet
production [8]. However the latter lacks flexibility and a
parameterization containing adjustable parameters should
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allow a better fit of the relevant data. In particular the
VDM input used in the AFG parameterization rests on
the π0 structure function determined from prompt photon
and Drell–Yan experiments [9] and the user is not allowed
to modify this input. Moreover, the parameterization was
only valid for Nf = 4; the large energies reached in col-
lider experiments now require that we take into account
the bottom-quark contribution.

The new AFG04 parameterization of the quark and
gluon distributions in the real photon is valid for Nf = 5.
Weworkat theNLOapproximation andwithin themassless
flavor-changing scheme. However we keep m2

q/Q2 correc-
tions (q = c, b) in the direct contribution to have smooth
thresholds when calculating F γ

2 (x, Q2). Asymptotically,
when m2

q/Q2 goes to zero, we recover the usual MS factor-
ization scheme for massless partons. The non-perturbative
input, always inspired by the VDM approximation, has a
flexible parameterization: the gluon and the sea normal-
ization, as well as the gluon shape can be modified. The
overall normalization of the non-perturbative input is also
left free, and the perturbative parameter Q2

0 can be var-
ied. We study the effects on F γ

2 of the variation of these
parameters; constraints are obtained from the comparison
of the theoretical predictions with LEP data. As expected,
data on F γ

2 do not give access to the gluon content of the
photon. A better determination of the latter should be ob-
tained from large-p⊥ photoproduction reactions, which we
briefly consider. A default parameterization results from
these studies. Other parameterizations, which reflect the
scattering of LEP data, are also proposed.

In Sect. 2, we discuss the necessity to introduce a
scheme-independent non-perturbative input. The method
to reach this goal is detailed in Sect. 3 and Appendix A. In
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Sect. 4, we present a specific non-perturbative input ob-
tained from the vector dominance model. Section 5 is de-
voted to the study of medium-Q2 LEP data, which allows
us to constrain the parameterization of the distributions.
We propose three different distributions which take into
account the scattering of LEP data, and compare our best-
fit parameterization to the GRS [10] and CJK [11] NLO
parameterizations. Finally the gluon distribution is consid-
ered in detail in Sect. 6. Appendix A presents a derivation
of the scheme-invariant non-perturbative formalism, and
Appendix B presents the parameterizations of the parton
distributions available in the form of a FORTRAN code.

2 Scheme-invariant non-perturbative input

In this section we recall the method we used [6] to study the
link between the non-perturbative and the perturbative
components of the photon structure function. Once this
link is understood, a factorization-scheme-invariant non-
perturbative component can be defined.

Let us start with a few definitions. The evolutions of
the gluon distribution Gγ(x, Q2), of the singlet distribution

Σγ(x, Q2) =
Nf∑
f=1

(qγ
f (x, Q2) + q̄γ

f (x, Q2)) ≡∑f q
(+)
f (x, Q2)

and of the non-singlet distributions qNS
f (x, Q2) = q

(+)
f −

Σγ/Nf (Nf is the number of flavors) are governed by
the inhomogeneous Dokshitser–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) equations [12]

∂Σγ

∂ log Q2 = kq + Pqq ⊗ Σγ + Pqg ⊗ Gγ , (2.1a)

∂Gγ

∂ log Q2 = kg + Pgq ⊗ Σγ + Pgg ⊗ Gγ , (2.1b)

∂qNS
f

∂ log Q2 = σNS
f kq + PNS ⊗ qNS

f (2.2)

where σNS
f = (e2

f/〈e2〉 − 1)/Nf with 〈em〉 =
∑
f

em
f /Nf .

The convolution ⊗ is defined by

P ⊗ q =
∫ 1

x

dz

z
P
(x

z

)
q(z) . (2.3)

The homogeneous (Pij) splitting functions were calcu-
lated in [13, 14] at the NLO approximation. The inhomo-
geneous splitting functions

kq =
α

2π
k(0)

q +
α

2π

αs(Q2)
2π

k(1)
q , (2.4)

kg =
α

2π

αs(Q2)
2π

k(1)
g (2.5)

may be derived from the Pij and are given in [15,16]; the
expression for the leading-order (LO) splitting function
k

(0)
q is 2Nf 〈e2〉3[x2 + (1 − x)2]1.
1 We do not consider next-to-next-leading-order (NNLO) cor-

rections. Therefore our parameterizations are consistent with

In terms of the parton distributions, the photon struc-
ture function is written

Fγ
2 (x, Q2) ≡ F γ

2 (x, Q2)/x

=
∑

f

e2
fq

(+)
f ⊗ Cq + Gγ ⊗ Cg + Cγ . (2.6)

The Wilson coefficients Cq and Cg may be found in [21], and
the direct term Cγ , in the MS scheme, is given by [21,22]

Cγ =
α

2π
2
∑

f

e4
f (2.7)

× 3
[(

x2 + (1 − x)2
)
ln

1 − x

x
+ 8x(1 − x) − 1

]
.

The physical quantity Fγ
2 is factorization-scheme-in-

dependent. This means that it does not depend on the
procedure (the factorization scheme) used to define the
NLO splitting function P

(n)
ij (n ≥ 1) and k

(n)
i , and the

functions Cq, Cg and Cγ . This is however true only if these
functionswere calculated to all orders inαs. If the truncated
series (2.4) and (2.5) are used, the photon structure function
is still scheme-independent, but only at order O(α0

s).
Let us consider, for the sake of simplicity, the non-

singlet (2.2). Its solution can be written, for moments of the
quark distribution qNS

f (n) =
∫ 1
0 dxxn−1qNS

f (x, Q2), as fol-
lows:

qNS
f (n) = σNS

f

∫ Q2
dk2

k2 kq(n)e
∫ Q2

k2
dk′2
k′2 PNS(n) . (2.8)

For small values of k2, the perturbative approach is no
longer valid. Let us assume that we can use this expression
for k2 ≥ Q2

0; we then define the perturbative (anoma-
lous [1]) component

qNS
AN(Q2, Q2

0) = σNS
∫ Q2

Q2
0

dk2

k2 kqe
∫ Q2

k2
dk′2
k′2 PNS (2.9)

(we have dropped the indices f and n).
For k2 smaller than Q2

0, we are in the realm of non-
perturbativeQCDandwewrite the corresponding hadronic
contribution (which behaves like a hadron structure func-
tion and is discussed in detail in Appendix A)

qNS
H (Q2, Q2

0) = qNS
H (Q2

0)e
∫ Q2

Q2
0

dk′2
k′2 PNS

, (2.10)

the total non-singlet distribution being the sum of the
anomalous and Hadronic component

qNS(Q2) = qNS
AN(Q2, Q2

0) + qNS
H (Q2, Q2

0) . (2.11)

Actually with (2.11) we have written the general solution
of the inhomogeneous equation (2.2), the only assumption

the NLO calculations of large-pT photoproduction cross sec-
tions [5,17]. Expressions of NNLO corrections and discussions
of their importance may be found in [18–20].
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being that the scale Q2
0 allows us to define a perturbative

and a non-perturbative component. However this way of
defining a non-perturbative component is too naive and
factorization-scheme-dependent. Indeed let us consider the
contribution of the HO inhomogeneous kernel α

2π
αs(k2)

2π k
(1)
q

to the anomalous component (2.9)

qNS
AN(Q2, Q2

0) (2.12)

= . . . −

1 −

(
αs(Q2)
αs(Q2

0

)−2P (0)
qq /β0


 α

2π

k
(1)
q

P
(0)
qq

σNS + . . .

where we used the running coupling constant defined by

∂αs(Q2)
∂ log Q2 = −αs

(
αs

4π
β0 +

(αs

4π

)2
β1

)
. (2.13)

When similar expressions for q
(+)
f are introduced in (2.6),

one obtains for Fγ
2 a contribution proportional to α0

s (be-
sides the leading logarithm contribution)

Fγ
2 ∼ − α

2π

k
(1)
q

P
(0)
qq

〈e4〉
〈e2〉 + Cγ (2.14)

which is factorization-scheme-independent, and a contribu-
tion which verifies the homogeneous LO DGLAP equation

Fγ
2 ∼

∑
f

e2
f

[
α

2π

k
(1)
q

P
(0)
qq

e2
f

Nf 〈e〉2 + q
(+)
H,f (Q2

0)

]

×
(

αs(Q2)
αs(Q2

0)

)−2P (0)
qq /β0

, (2.15)

which must also be scheme-independent. Now it is clear
from (2.15) that q

(+)
H,f is not scheme-invariant with respect

to the photon factorization scheme that defines the inho-
mogeneous kernel k(1)

q . Therefore it cannot be, for instance,
the same in the MS scheme or the DISγ scheme defined
in [16]. Of course, q

(+)
H is also non-invariant with respect

to the usual hadronic factorization scheme which defines
P

(1)
ij . Thus the assumption that the hadronic input could

be described by a VDM-type input is clearly too naive.
It may however be true in a specific factorization scheme
and we explore this possibility in the next section and in
Appendix A.

3 The non-perturbative input at lowest order

To understand the content of qH(Q2
0) better, let us consider

the lowest-order contribution to Fγ
2 from the imaginary

part of the box diagram, Fig. 1, which shows how the virtual
photon q probes the quark content of the real photon p.
The lower part G(k, p)/(−k2) (which includes the quark
propagators) represents the coupling of the real photon to
a qq̄ pair and includes non-perturbative effects.

q

p

k

Fig. 1. The box diagram

Actually our only assumption is that G(k, p) tends to
the point-like term for large |k2|.

lim
|k2|�Λ2

G(k, p) = GP (k, p) ∼ δ
(
(p − k)2

) [
z2 + (1 − z)2

]
(3.1)

where z is the fraction of the longitudinal p momentum
carried away by k. When k2 goes to zero, G(k, p)/(−k2)
must be integrable, because Fγ

2 is a physical finite quantity.
This means that we must have lim

k2→0
G(k, p) ∼ (−k2)α

with α > 0.
We make the point-like content of G(k, p) explicit

by writing

G(k, p)
−k2 =

GP (k, p)
−k2

+
G(k, p) − θ(|k2| − Q2

0)G
P (k, p)

−k2

− θ(Q2
0 − |k2|)GP (k, p)

−k2 . (3.2)

The first term on the RHS of (3.2), without cut on k2,
corresponds to the perturbative expression of the box di-
agram.

Its contribution, in the collinear approximation, is easily
calculated [6] and is equal to

Fγ
2 ∼ 3e4

f

α

π

[
(x2 + (1 − x)2)

(
− 1

ε̄

(
Q2

µ2

)−ε
)

(3.3)

+ (x2 + (1 − x)2) ln(1 − x) + 2x(1 − x)

]

≡ 3e4
f

α

π

(
− 1

ε̄
+ ln

Q2

µ2

)
(x2 + (1 − x)2) + Cf

γ,c (3.4)

in which we add a quark f and an antiquark f̄ contribution.
We define Q2 = −q2 and x = Q2/2p · q. Note that we took
the upper bound of the integral over |k2| equal to Q2. (The
actual bound is Q2/x, but this x-dependence is beyond the
collinear approximation).

This expression for the box diagram has been obtained
with the dimensional regularization ( 1

ε̄ = 1
ε − γE + ln 4π);

this is the one used to define the MS factorization scheme
which consists of subtracting the term proportional to
(Q2/µ2)−ε/ε̄. This procedure defines the scheme-depen-
dent direct term Cf

γ,c in the collinear approximation (or
Cγ given in (2.7) when we take into account the non-
collinear terms).

As Fγ
2 (x) is a physical quantity, it cannot contain the

1/ε pole, and it is here that the third term of the RHS of
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(3.2) plays its part. We obtain from this last term

Fγ,c
2 = −3e4

f

α

π

(
− 1

ε̄
+ ln

Q2
0

µ2

)
(x2 + (1 − x)2) − Cf

γ,c .

(3.5)
This term has no anomalous lnQ2 behavior. Actually it

is independent of Q2 when QCD is not switched on. When
the part of Fγ,c

2 that is proportional to (− 1
ε̄ + ln Q2

0
µ2 ) is

added to (3.4), the 1/ε̄ poles cancel each other and lnQ2/µ2

is changed into

ln
Q2

Q2
0

= ln
Q2

Λ2 − ln
Q2

0

Λ2 =
4π

β0αs(Q2)

(
1 −
(

αs(Q2)
αs(Q2

0)

))
.

(3.6)
This Q2-dependence corresponds to the LO part of (2.9)
with P

(0)
qq = 0.

Let us now consider the second term of (3.2). The θ func-
tion cuts the 1/k2 perturbative behavior of this contribu-
tion. The integration over k2 is therefore controlled by the
non-perturbative behavior of G(k, p)/(−k2) and we obtain
a result which does not depend on Q2. The value of Q2

0 must
of course be chosen such that GNP(p, k, Q2

0) ≡ G(k, p) −
θ(|k2| − Q2

0)G
P (k, p) represents the non-perturbative in-

put. For instance an overly large value of Q2
0 would lead

to a perturbative tail in GNP(p, k, Q2
0).

We now define the non-perturbative quark content of
the real photon by∫

d4kδ

(
z − k · n

p · n

)
GNP(p, k, Q2

0)
(−k2)

= qNP(z, Q2
0) (3.7)

(n is a light-cone vector such that k · n ∼ k0 + kz). With
(3.7) we have defined a non-perturbative input (if Q2

0 is
correctly chosen) which is invariant with respect to the pho-
ton factorization scheme. Indeed it does not depend on the
regularization used to calculate (3.4) nor on the subtrac-
tion defining the MS scheme. When the QCD evolution
is switched on (all-order QCD expressions are discussed in
Appendix A), both qNP and Cf

γ,c acquire a hadronic Q2

dependence and we obtain a hadronic contribution (which
behaves like a hadronic structure function) to Fγ

2

qH
f (Q2) =

(
αs(Q2)
αs(Q2

0)

)−2P (0)
qq /β0

(
qNP
f (Q2

0) − Cf
γ,c

2e2
f

)
.

(3.8)
This hadronic contribution is scheme-dependent be-

cause of the presence of Cf
γ,c, but qNP

f (Q2
0) is not. There-

fore, in the MS factorization scheme, the hadronic input
is given by expression (3.8), and, at Q2 = Q2

0, we have

Fγ
2 (x, Q2

0) = Cγ(x) (3.9)

+
Nf∑
f=1

[
e2
f

(
qNP
f (Q2

0) + q̄NP
f (Q2

0)
)− Cf

γ,c

]
.

In the above expression, we only studied the part of
Fγ

2 associated with the quark contributions. (Nor did we
write the convolution with the Wilson coefficient.) Similar

considerations applied to the gluon distribution lead to
modifications of the input starting at order O(αs). The
NNLO corrections are not considered in this paper.

These results are different from those obtained by the
authors of [10, 16, 23] who work in a factorization scheme
called DISγ in which

α

2π

〈e4〉
〈e2〉 k(1)

q (DISγ) =
α

2π

〈e4〉
〈e2〉 k(1)

q (MS)−CγP (0)
qq , (3.10)

so that Cγ(DISγ) = 0. In this case, the structure function
is written

Fγ
2 (x, Q2

0) =
Nf∑
f=1

e2
f

(
qNP
f,DISγ

(Q2
0) + qNP

f,DISγ
(Q2

0)
)

(3.11)

where qNP
f,DISγ

(Q2) is the non-perturbative input in this
particular factorization scheme.

Let us finish this discussion by emphasizing the fact
that the parton distributions defined by (2.11) and (3.8) are
universal (independent of the particular reaction studied
here, namely the DIS on a real photon). Of course they are
factorization-scheme-dependent and here we work in the
MS scheme.

4 The vector dominance model

The non-perturbative contribution defined in (3.7) is not
known. This is why we could proceed as in the pure hadronic
case by defining a parameter-dependent input and by de-
termining the parameters by a fit to data. Here we prefer
to follow another path and to try to constrain the non-
perturbative input by assuming that it can be described
by the quark and gluon distributions in vector mesons.
This assumption, the vector dominance model, is known
to work well in the non-perturbative domain and to de-
scribe correctly how photons couple to quarks. We used
this assumption in our preceding paper [6], which led to the
AFG parameterization. Here we keep this approach, but
we make it more flexible by varying the non-perturbative
normalization of the gluon and sea quarks. We also consider
modifications of the gluon x-shape.

In [6] we considered the photon as a coherent superpo-
sition of vector mesons

γ =
g√
2

(
ρ +

ω

3
−

√
2

3
φ

)
= g

(
2
3

uū − 1
3

dd̄ − 1
3

ss̄

)
(4.1)

with a coupling constant g determined from the σtot(γp)
and σtot(πp) cross sections

g2 � α . (4.2)

Assuming that the parton distributions in the qq̄ bound
states of (4.1) are similar to those of the pion, observed in
Drell–Yan and direct photon reactions [9], we can write

uγ
valence(x, Q2) = g2 4

9
uπ

valence , (4.3a)
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uγ
sea(x, Q2) = g2

(
4
9

+
1
9

+
1
9

)
uπ

sea = g2 2
3

uπ
sea ,

(4.3b)

Gγ(x, Q2) = g2 2
3

gπ(x, Q2) (4.3c)

and so on for the parton distributions of the non-pertur-
bative component of the real photon (we assume a SU(3)
flavor symmetry).

This rough approach leads to a reasonable agreement
with data [6]. Here we would like to make it more flexible.
Let us start from the parameterization of the pion structure
function at Q2 = 2 GeV2 taken from [9] and used in [6]

xuπ
valence = Cvxp2(1 − x)p3 (p2 = .48 , p3 = .85) (4.4a)

xqπ
sea = Cs(1 − x)p8 (p8 = 7.5 , Cs = 1.2) (4.4b)

xgπ = Cg(1 − x)p10 (p10 = 1.9) (4.4c)

where Cv = 1/B(p2, 1 + p3), B(x, y) is the beta function
and Cg = (1 + p10)(1 − Cs

1+p8
− 2p2

1+p3+p2
) = 0.447(1 + p10),

Cg being determined in such a way that∫ 1

0
dxx [2uπ

valence + qπ
sea + gπ] = 1 . (4.5)

This input is in good agreement with Fγ
2 (x, Q2) data which

mainly constrain the quark distributions. Therefore we
leave the quark distributions fixed and we take p10 as a free
parameter. As we shall see below, Fγ

2 is not sensitive to
variations of p10, a parameter which should be constrained
by photoproduction data. We also leave some freedom in
the normalization of the distributions. First of all the over-
all normalization is allowed to vary around the value fixed
in (4.2) and we write

g2 = Cnp · α . (4.6)

Then we also consider the possibility of having a dif-
ferent coupling of the photon to the valence distributions
and to the sea and gluon distributions (this extra coupling
could proceed through a quark loop). We parameterize this
possibility by a modification of Cs and Cg

Cs = Cmom · 1.2 (4.7a)

Cg = Cmom · 0.447(1 + p10) , (4.7b)

the default value being Cmom = 1.0.
Let us end this section by discussing another input, the

quark masses. Threshold effects due to the charm quark
may be important in Fγ

2 (x, Q2) at large x. To study this
problem, let us again consider the box diagram and the
massive quark contribution to Fγ

2 . Dropping all inessen-
tial factors and neglecting terms of order O(m2/Q2), one
obtains [24]

Fγ
2,m ∼ θ(1 − β)

×
{

(x2 + (1 − x)2) ln
Q2

m2
q

+ (x2 + (1 − x)2) ln

((
1 +

√
1 − β

2

)2
s

Q2

)

+ (8x(1 − x) − 1)
√

1 − β

}
, (4.8)

with s = (p + q)2 and β = 4m2
q/s. Subtracting the term

proportional to log Q2

m2
q
, we define a massive direct term

Cγ(x, mq)

= e4
c

α

π
3θ(1 − β)

×
[
(x2 + (1 − x)2) ln

((
1 − x

x

)(
1 +

√
1 − β

2

)2
)

+ (8x(1 − x) − 1)
√

1 − β

]
(4.9)

which has the massless limit (2.7) when β = 0.
Then the term proportional to ln Q2

m2
q

is replaced by
that generated by the massless evolution equations (2.1)
and (2.2) with the boundary condition q(x, Q2 = m2

q) =
0. This evolution exactly reproduces, at the lowest order
in αs, the ln Q2

m2
q

term of (4.8). Therefore, close to the

threshold Q2 = m2
q, Fγ

2 of the expression (2.6) reproduces
the behavior (4.8) of the box diagram contribution. Let
us also note that we keep in Cγ(x, mq) the terms of order
O(m2/Q2) when Q2 ∼ m2

q.
The effect of the massive direct term (4.9) is important

when x goes to xth = 1/(1 + 4m2
q/Q2). One then gets

ln (1+
√

1−β)2

β ∼ 2
√

1 − β and Fγ
2,q given by (4.8) goes to

zero, whereas the use of the massless limit (2.7) (without
cut on x) leads to a negative contribution when x goes to 1.

However one must keep in mind that, in most appli-
cations, we are far from the threshold and the massless
evolution of the charm distribution is a good approxima-
tion which allows us to take into account the effects of
the QCD evolution, not present in (4.8). But this is not
true for the bottom distribution as long as m2

b/Q2 is large.
The distributions presented in this paper are obtained by
solving (2.1) and (2.2) with Nf = 3 for Q2

0 ≤ Q2 ≤ m2
c ,

Nf = 4 for m2
c < Q2 < m2

b (mc = 1.41 GeV) and Nf = 5
for m2

b < Q2 (mb = 4.5 GeV).

5 Analysis of LEP data

In this section we analyze data on Fγ
2 in the light of the pa-

rameterization discussed in Sects. 3 and 4. Once we assume
that the non-perturbative input can be determined within
the framework of the vector dominance model, as explained
in the preceding section, the number of free parameters is
considerably reduced. F2 is barely sensitive to the gluon
distribution parameters Cmom and p10 that we shall dis-
cuss in relation to photoproduction reactions and, for the
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time being, we keep these parameters equal to their default
values: Cmom = 1.0 and p0 = 1.9. Therefore only two free
parameters remain: Cnp which fixes the overall normaliza-
tion of the non-perturbative input (expression (4.6)) and
Q2

0 which fixes the boundary between the perturbative and
the non-perturbative model.

If the data were precise enough, it should be possi-
ble to constrain Cnp and Q2

0 separately. In fact the VDM
contribution decreases rapidly with x and the perturba-
tive contribution is dominant at large x. Therefore in this
kinematical domain, it should be possible to determine Q2

0
by means of medium Q2 data (indeed for overly large Q2,
Fγ

2 is no longer sensitive to Q2
0). At small values of x on

the contrary the non-perturbative input is large and data
should constrain Cnp. As we shall see this ideal situation
is not realized, because the data existing at large values
of x are very poor, and we are led to fit low-x data where
Cnp and Q2

0 are correlated.
First let us concentrate on LEP data at small and

medium Q2, an overall comparison with all existing data
will be conducted at the end of this section. The data that
we analyze are in the range 3.7 ≤ Q2 ≤ 17.3 GeV2 and be-
long to the four LEP experiments: ALEPH [26] LEP2 data
at 17.3 GeV2, DELPHI [27] LEP1 data at 12.7 GeV2 and
5.2 GeV2, L3 [28] LEP2 data at 15.3 GeV2, and OPAL [29]
LEP1 (Q2 = 3.7 GeV2) and LEP2 (Q2 = 10.7 GeV2) data.
The comparison between NLO theory and data is done in
Figs. 2 and 3 where we show the theoretical curves obtained
for Q2

0 = .3 GeV2 and for Q2
0 = 1.0 GeV2 with Cnp = 1. We

work in the MS scheme and use Λ
(4)
MS

= 300 MeV, a value

which is in agreement with the world average and a de-
termination obtained by fitting photon structure-function
data [25]. The coupling αs(Q2) is obtained by exactly solv-
ing (2.13).

In Fig. 2, we see that large-x data are poor. Either they
have large error bars (ALEPH, L3), or they correspond
to large x bins (DELPHI, OPAL)2. Therefore they cannot
accurately constrain Q2

0 and do not allow us to check the
predicted x-dependence of F γ

2 (x, Q2). On the other hand,
all large-x data points (x � .2) favor a value of Q2

0 close
to 1 GeV2; the choice Q2

0 = 0.3 GeV2 leads to predictions
well above the experimental points. This is also true for
smaller values of x where the VDM contribution is large.
However in this x region we expect a strong correlation
between Q2

0 and Cnp.
The low-Q2 data of Fig. 3 lead us to the same conclusion.

However, whereas the agreement between OPAL data and
theory is good, suggesting a slightly smaller contribution
of the VDM component, the DELPHI data on the contrary
suggest a very large suppression, by some 30 %, of the VDM
component. It is worth noting that the DELPHI points at
x = 0.05 and x = 0.17 are below the corresponding OPAL
points, although the Q2 value is larger. Other data at low
Q2 do not clarify the situation. The PLUTO data [30] are

2 The errors are the total errors (when given by the exper-
iments), or the linear sum of the systematic and statistical
errors (OPAL). We also investigated the effect of quadratically
summed errors in the fit performed below. Our best-fit pa-
rameters change by less than 10 %. Correlations between data
points are not taken into account.
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close to the OPAL points, but the error bars are very large.
The L3 data [31] (Q2 = 5 GeV2, not shown) are noticeably
above the OPAL data at small x, x ∼ 10−2, and TPC-
2γ [32] data at Q2 = 5.1 GeV2 (not shown) have large
error bars.

To determine the values of Q2
0 and Cnp, we proceed

to a best fit of the LEP data displayed in Figs. 2 and 3.
The theoretical values are calculated with all parameters
kept fixed, except Q2

0 and Cnp, and they are averaged over
the corresponding experimental x bins. For a given value
of Q2

0, we look at the value of Cnp which minimizes the
χ2 value, and we obtain the results shown in Fig. 4 for the
ALEPH and DELPHI experiments. At the minimum of the
curves, the corresponding values of the non-perturbative
normalization are, respectively, Cnp=0.60 and Cnp=1.05.

We obtain very different shapes of the χ2 curves. In fact,
the L3 and OPAL data lead to χ2 curves very similar to
that displayed in Fig. 4 for ALEPH. Only the DELPHI data
lead to a false minimum at Q2

0=1.5 GeV2 and Cnp=1.05;
there is no true minimum for Q2

0 ≥ .2 GeV2. It is easy to
find the reason for this behavior. The first point at small x
of the DELPHI data is high with respect to the next point.
This configuration, associated with small errors, drives the
fit to small Q2

0 and Cnp values and reproduces the steep
slope of F γ

2 (x, Q2) at small x. Such an effect is not present
in the other sets of data. The small errors of the DELPHI
data give an important weight to this experiment in a fit

of all the data sets shown in Figs. 2 and 3. Therefore, when
we perform such a fit, we find (Fig. 5 (left)) a result similar
to the DELPHI fit of Fig. 4.

As explained at the beginning of this section,we selected
medium and low-Q2 LEP data to constrain the value of
Q2

0. This led us to consider the LEP1 data from DELPHI.
However in the LEP2 data from the same experiment,
the small-x behavior observed in the LEP1 data is less
marked. The DELPHI collaboration, using different Monte
Carlo generators, noticed a strong model dependence of the
resulting data on F γ

2 (x, Q2). For instance the small-x data
at Q2 = 19 GeV2 show a sizeable dependence on these
generators and, moreover, two (over three) of the values
obtained for F γ

2 (x, Q2) are smaller than that obtained at
LEP1 (Q2 = 12.7 Gev2). Therefore, to take this scattering
into account, we change the errors in the first x bin of the
LEP1 DELPHI preliminary data by a factor two. After
this modification, we obtain the χ2 curve shown in Fig. 5
(right). The minimum value of the curve at Q2

0 � .7 GeV2

is obtained for Cnp � .78, and the χ2 per degree of freedom
is χ2

df = 1.03.
This result demonstrates the good agreement between

our theoretical input (3.9) and the LEP data. However,
as already discussed, these data do not well constrain the
large-x behavior of F γ

2 and the good χ2 shown in Fig. 5
cannot be seen as a confirmation of our large-x theoretical
expression. On the other hand we must note that some
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LEP data are marginally compatible3. This is shown in
Fig. 6 in which we display the ∆χ2 = 1 contour in the Q2

0
and Cnp plane. The best fits to the individual data sets are
also exhibited and are scattered outside the contour. For
instance the L3 data compared to theory calculated with
the overall best-fit parameters (Q2

0 = 0.7, Cnp = 0.78)
led to χ2 = 4.4, which must be compared to the value
obtained at the L3 best-fit point (0.7, 1.1) χ2 = 0.85. For
OPAL (10.7) we obtain χ2 = 1.76 compared to χ2 = 0.072.

To take into account this scattering partially, we pro-
vide three parameterizations compatible with the contour
of Fig. 6, corresponding to three different values of Q2

0 :
Q2

0 = 0.34 GeV2, Q2
0 = 0.70 GeV2 (best-fit parameteriza-

tion) and Q2
0 = 0.97 GeV2. We use the notation4 AFG04

(Q2
0, Cnp, p10) and the short-hand notations AFG04 BF =

AFG04(0.7, 0.78, 1.9), AFG04 LW = AFG04(0.34, 0.6, 1.9)

3 Note also that some data are not corrected for the limit
P 2 → 0 of the target photon virtuality.

4 The parameterization AFG04(0.5, 1.0, 1.9) has been used
in [47] under the name AFG02 and in [7] under the name AFG04.

and AFG04 HG = AFG04(0.97, 0.84, 1.9) for the param-
eterizations presented in Appendix B.

We would obtain similar results from the world data
on F γ

2 , but with a larger scattering of the various experi-
ments. This can be observed from Figs. 7, 8 and 9 in which
we compare our best-fit prediction with these data [26]–
[46]. Whereas the overall agreement is good, some data
are clearly outside the general trend represented by the
best fit. Therefore a general fit leading to a single param-
eterization does not have a clear meaning. This is why we
prefer to frame the data by several parameterizations, as
we did after the analysis of recent low- and medium-Q2

data sensitive to Q2
0 and Cnp.

Let us now compare, in Fig. 10, the low-Q2
0 and high-Q2

0
AFG04 parameterizations to the best-fit parameterization.
Let us consider the figure on the left. At small values of
x, where the non-perturbative component is large, the ra-
tio partly reflects the values of Cnp used in AFG04 BF
and AFG04 LW. At very small values of x, the pertur-
bative contribution becomes dominant and the ratio re-
flects the effect of the Q2 evolution, which is larger for
AFG04 LW. At x ∼ 0.5, the non-perturbative contribution
is smaller and the ratio also reflects the effect of the Q2

evolution of the perturbative component. For large-x val-
ues, the u-quark distribution contains a term proportional
to ln(1 − x). Adding the contribution from k

(1)
q (2.12) to

the Cf
γ,c contribution (3.8), we obtain a term proportional

to
lnn

n
(1+(αs(Q2)/αs(Q2

0))
−2P (0)

qq /β0), which is large for a

small evolution (P (0)
qq (n) being negative at large n). The u-

quark ratio reflects this behavior. Finally we note that the
variations in the distribution functions never exceed 10 %.

We end this section by a few words on other NLO
parameterizations. Let us start with the AFG one. In
fact the AFG parameterization is very close to the pa-
rameterization AFG04(0.5, 1.0, 1.9). The only differences
come from the values of Λ

(4)
MS

(300 MeV in AFG04 and
200 MeV in AFG) and from the absence of the bottom
quark distribution in AFG. The comparison is done at
Q2 = 50 GeV2, a scale which is in the range of those used
in large-p⊥ photoproduction. The ratio of the best-fit distri-
bution AFG04 BF to the AFG distribution is displayed in
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Fig. 7. Comparison between the
best-fit structure function and
the world data with 3.7 GeV2 <
〈Q2〉 < 11 GeV2. The dashed
line is the AFG result

Fig. 8. Comparison between the
best fit structure function and
the world data with 11 GeV2 <
〈Q2〉 < 29 GeV2
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Fig. 9. Comparison between the
best-fit structure function and
the world data with 29 GeV2 <
〈Q2〉 < 700 GeV2.
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Fig. 11. The smaller normalization of the non-perturbative
component ofAFG04 BFcompared to that used inAFGex-
plains the pattern at small-x values. However, at very small
values ofx, the inhomogeneous kernels k

(1)
q and k

(1)
g (2.4 and

2.5) have a singular behavior (k(1)
q ∼ ln2 x and k

(1)
g ∼ 1

x )
and the behavior of the perturbative gluon and sea compo-
nents reflects a faster evolution of AFG04 with Q2 due to
the larger value of ΛMS . At large x values the perturbative
contributions are important and the ratio of the u-quark
distribution is close to the ratio r = αs(AFG)/αs(AFG04)
at Q2 = 50. GeV2, namely r ∼ 0.9. The difference in the
predictions for F γ

2 are illustrated in the figure on the right.
It is not very large, and could be distinguishable only at
large values of x where the data are poor. Comparisons

between AFG04 BF and AFG predictions are given for
OPAL (3.7), OPAL (10.7) and ALEPH (67.2) in Figs. 7
and 9.

A comparison with the GRS [10] parameterization can
also be performed on the basis of Figs. 7 and 8. In the second
reference of [10], a comparison is made between OPAL data
and the GRS predictions which can hardly be distinguished
from our best-fit curves at Q2 = 3.7, 10.7 and 17.8 GeV2.
However note that the large-x behaviors of F γ

2 (outside
the data range) are quite different between the GRS and
the AFG04 BF parameterizations. This behavior comes
from the different factorization schemes used (MS ver-
sus DISγ [10]), associated with different non-perturbative
inputs (compare (3.9) and (3.11)).
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In a recent publication, the authors of [11] proposed
new five-flavor NLO parameterizations and carried out de-
tailed comparisons with world data, and other (AFG and
GRS) parameterizations. On the basis of Figs. 7, 8 and 9,
and of similar figures in [11], we can easily observe sev-
eral differences between the parameterizations. At small
x (x � 10−2) and for Q2 � 5 GeV2 the parameterizations
of [11] are higher than AFG04 BF (which is very close to
GRS). This trend increases with Q2. At medium x in the
charm threshold region and at larger values of x (x � .6),
the differences between AFG04 BF, and the FFNSCJK1
and CJK NLO parameterizations of [11] are also notewor-
thy. Here also the origin of this difference is the different
non-perturbative inputs associated with the MS scheme
(expression (3.9)) and the DISγ scheme used in [11]. In
all cases the data are not accurate enough to enable to
distinguish between the models.

6 The gluon content of the photon

In this section we study other possible options for the pa-
rameterization of the parton distributions in the photon.
First we study a modification of the sea quark distributions.
Then we investigate the effect of changing the normaliza-
tion of the sea quark and gluon distributions. And finally
we modify the large-x shape of the gluon distribution. As
we shall see, these modifications are poorly constrained by
F γ

2 data, but some of them could be visible in photopro-
duction experiments.

The small-x behavior of the sea quark distribution
(4.4b) that we have used until now is less steep than those
of some recent parton distributions in the proton [48–50].
For instance we have x(u + d) ∼ .061/x.3 at x < 10−3 for
the CTEQ6M distribution at Q2

0 = 1.69 GeV2. To explore
the effect of such a steep behavior, we modify our sea distri-
bution (4.4b), while keeping fixed the momentum carried
by the sea quarks (

∫ 1
0 dxxqπ

sea(x, Q2
0 = 2 GeV2) = 0.14)

xqπ
sea = .48(1 − x)7.5/x.3 . (6.1)

This ansatz corresponds to quite a large sea at small-x,
larger by more than a factor of two than the corresponding

CTEQ6M parameterization for the proton. Therefore (6.1)
must be considered as an extreme parameterization.

The resulting χ2 is less satisfactory than that obtained
in the preceding section. With the exception of DELPHI,
the individual χ2 deteriorate. The total best fit now corre-
sponds toχ2 = 34.3 (withoutDELPHI-errormodification),
close to the value of Sect. 5. If we modify the errors, we
obtain χ2 = 31.4, instead of 25.8 in Sect. 5. From these re-
sults, we see that there is no compelling reason to modify
the small-x behavior of the sea distributions we used in
the preceding section.

Let us now study the effects of the parameter Cmom,
whichmodifies the normalization of the sea quark and gluon
distributions according to (4.7a, 4.7b) (at small-x values,
sea quark and gluon distributions are strongly coupled
and we modify their normalizations by the same param-
eter Cmom). If we keep Q2

0 and Cnp at the best-fit values
established in Sect. 5, Cmom is quite constrained by F γ

2
data and the χ2 value varies by less than one unit if we
stay in the domain 0.92 � Cmom � 1.08. However it is clear
that we can partially compensate the Cmom variations by
also varying Cnp. Keeping Q2

0 = 0.7 GeV2, we first observe
a strong correlation between Cnp and Cmom (Fig. 12). By
playing with the values of Cmom and Cnp, for instance,
we can enhance the importance of the valence compared
to the sea quark. But it is unlikely that photoproduction
experiment could better constrain Cnp and Cmom and we
do not pursue this study in detail.

Finally we consider the modification of the gluon distri-
bution and we vary the parameter p10 of expression (4.4c).
As expected F γ

2 is not sensitive to the gluon distribution
and the LEP data do not constrain the value of p10. We
display in Fig. 13 the dependence of the χ2 on p10, which
is weak (Q2

0 and Cnp being fixed at the best-fit values). In
a large range in p10, χ2 varies by less than one unit. In
Fig. 14 we show the behavior of the distributions obtained
with p10 = 1.0 (hard gluon) and p10 = 4.0 (soft gluon)
at Q2 = 50.0 GeV2, the other parameters being kept fixed
at the best-fit values. The behavior at small values of x is
due to the normalization factor Cg (4.4c); at large values
of x the non-perturbative inputs vanish and the ratios go
to one.

On the other hand photoproduction reactions [51] are
sensitive to the gluon distribution since an initial gluon can
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Fig. 15. The enhancement of the gluon contribution to the
reaction γ + p → γ + jet + X due to cuts on the rapidities ηγ

and ηjet

interact with a parton from the initial proton producing two
large-p⊥ jets in the final state. Jet production in photon–
photon collisions is also a reaction that allows the observa-
tion of the gluon distribution in the range 0 < x � 0.4 [52].
A particularly interesting reaction is the photoproduction
of large-p⊥ photon and jet, which has been studied in [7]
in detail. The interest of this reaction comes from the fact
that the scale dependence of the cross section is well un-
der control, and therefore, the theoretical predictions are
reliable. We quote here one result of this paper, referring
the interested reader to the original publication [7]. Fig-
ure 15 displays the cross sections dσ/dxLL, where xLL = pγ

⊥
(e−ηγ + e−ηjet)/2Eγ , for various cuts on the rapidities ηγ

and ηjet (Eγ is the energy of the initial photon). In the
forward region where the rapidities ηγ , ηjet are large, the
cross section is dominated by the resolved contribution.
For some cuts, half of the cross section is due to the gluon
distribution in the photon. But the observable range in
x is small (x � 0.2) and the cross section is fairly small.
However this type of data could be used to constrain the
poorly known Gγ(x, Q2).

7 Conclusions

We have proposed a new set of next-to-leading-order parton
distributions for real photons. We work in the MS scheme
with a variable number of massless flavors, keeping however
the massive correction terms for charm and beauty quarks,
in the direct contribution to the Fγ

2 structure function. The
perturbative contribution is assumed to vanish below a Q2

0
value and a VDM-type parameterization is used for the
non-perturbative input at this value. We give a detailed dis-
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cussion on how to isolate the scheme-invariant piece of the
structure function to which the physical VDM input should
be applied. The distributions are set up such that various
input parameters can be easily changed: these are the value
of Q2

0, the overall normalization of the non-perturbative
input and the x-dependence of the gluon which is poorly
constrained by the photon structure-function data. Using
the LEP data, an attempt to decorrelate the perturbative
contribution, controlled by Q2

0, from the non-perturbative
one is made. It turns out that the error bars are too large
to determine unambiguously the value of Q2

0. A best fit to
low- and medium-Q2 LEP data is then done which is also
shown to yield a good agreement with the world data. A
large dispersion in the value of the best-fit parameters is
observed when a minimum-χ2 fit is performed for each set
of LEP data independently. We therefore propose several
sets of parton distributions to frame the data. Since the
gluon distribution cannot be constrained from the deep
inelastic data, we suggest to consider the photoproduction
of photons, hadrons or jets at large transverse momentum.

Appendix A

In this appendix, we give a derivation of expression (3.8).
We start from the reaction in which the target photon,
instead of being real, has a small virtuality p2(−p2 ≡ P 2 

Q2), but large enough for the perturbative approach to be
valid. This allows us to study the structure of the HO
corrections to Fγ

2 and to understand how to take the real
photon limit p2 → 0. The transverse structure function
FT

2 (Q2, P 2, n) (transverse with respect to the polarization
of the target photon) can be written

FT
2 (Q2, P 2, n) =

∑
f

e2
fCq(n)qNS

f (Q2, P 2, n)

+CNS
γ (n) (A.1)

where, for simplicity, we only consider the non-singlet con-
tribution.

This expression is obtained in resumming all the
ln(Q2/P 2) in the quark distribution qNS

f (Q2, P 2, n),
whereas Cq(n) and CNS

γ (n) are expansions in powers of
αs(Q2). This procedure defines a factorization scheme
called the virtual factorization scheme in [53]. In this scheme
the Wilson coefficient Cq(n) and the direct term CNS

γ (n)
are known since the work of Uematsu and Walsh [54].

The quark distribution is a solution of (2.2) (we drop
the index NS and the moment variable n)

qf (Q2, P 2) = σf

∫ αs(Q2)

αs(P 2)

dλ

β(λ)
kq(λ)e

∫ αs(Q2)
λ

dλ′
β(λ′) Pqq(λ′)

.

(A.2)
To simplify the notation further, we consider one quark

species and drop the charge factors, which are present in
σfkq(λ) of (A.2) (that we shall note k(λ)) and in CNS

γ .
With this convention, the direct term is written [54]

Cγ(x) =
α

2π
6
{[

(x2 + (1 − x)2) ln
1
x

+ 2x(1 − x) − 1
]

+
(
x2 + (1 − x)2

)
ln

1
x

+ 6x(1 − x) − 1
}

.

(A.3)

It is worth noting the following points. First Cγ(x) is
scheme-dependent and different from the MS expression
(2.7). However it is easy to move from the virtual scheme
to the MS scheme by keeping in mind that expression (2.14)
must be scheme invariant, which leads to

α

2π

(
k(1)MS

(n)

P
(0)
qq (n)

− k(1)(n)

P
(0)
qq (n)

)
= CMS

γ (n) − Cγ(n)

≡ ∆C(n) (A.4)

where, from (2.7) and (A.3)

∆C(x) =
α

2π
6
{(

x2 + (1 − x)2
)
lnx(1 − x) + 1

}
(A.5)

in the x-space.
Second, the direct terms Cγ are target-dependent and

depend on the regularization used to avoid a collinear diver-
gence in the calculation of the box diagram. For instance,
in dimensional regularization, the target-dependent part
has been calculated in Sect. 3, and is given by Cf

γ,c (3.5) (in
which e4

f is dropped). For a virtual photon, we obtain the
first line of (A.3) [53], whereas the second line is universal
and equal to the equivalent MS expression. Therefore we
can write in general

Cγ(x) = Ccol
γ (x) + CU

γ (x) . (A.6)

With the notation “col”, we indicate that the target-depen-
dent part of Cγ comes from the lower limit of the integration
over k2 (cf. expression 3.2 and 3.4). A similar decomposition
exists for k(1)

k(1) = k(1)col + k(1)U

(A.7)

because the target-dependent terms, which are present in
Cγ(x), also appear in the course of the calculation of k(1)

under the form Ccol
γ (n)P (0)

qq (n) (this point has been dis-
cussed in detail in [53]). Therefore the combination

− α

2π

k(1)(n)

P
(0)
qq (n)

+ Cγ(n) = − α

2π

k(1)U

(n)

P
(0)
qq (n)

+ CU
γ (n) (A.8)

and consequently F2(Q2, P 2, n) (when Q2 is very large)
does not depend on the details of the target.

We are now ready to study the limit P 2 → 0 of ex-
pression (A.2). With this aim in view, we introduce an
intermediate scale Q2

0 which allows us to isolate the P 2-
dependent part of (A.2)
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q(Q2, P 2) = q(Q2, Q2
0) (A.9)

+
∫ αs(Q2

0)

αs(P 2)

dλ

β(λ)
k(λ)e

∫ αs(Q2)
λ

dλ′
β(λ′) Pqq(λ′)

,

where q(Q2, Q2
0) is given by (A.2) in which P 2 is replaced

by Q2
0 (in Sect. 3, Q2

0 is the limit between the perturbative
and the non-perturbative domains). Using the notation

k(λ) =
α

2π

{
k(0) +

λ

2π
k(1)U

+
λ

2π
k(1)col

}

= kU (λ) +
α

2π

λ

2π
k(1)col (A.10)

we rewrite the integral in (A.9)

∫ Q2

0

P 2

dk2

k2 kU (λ)e
∫ Q2

0
k2

dk′2
k′2 Pqq

− α

2π

k(1)col

P
(0)
qq


1 −

(
αs(Q2

0)
αs(P 2)

)−2
P

(0)
qq
β0






· e

∫ α(Q2)
α(Q2

0)
dλ′

β(λ′) Pqq(λ′)
. (A.11)

After extracting from (A.11) the P 2-independent, but
target-dependent term, k(1)col/P

(0)
qq , we define

H(Q2
0, P

2) =
∫ Q2

0

P 2

dk2

k2 kUe
∫ Q2

0
k2

dk′2
k′2 Pqq

+
α

2π

k(1)col

P
(0)
qq

(
αs(Q2

0)
αs(P 2)

)−2
P

(0)
qq
β0

(A.12)

and rewrite FT
2 as

FT
2 (Q2, P 2, n) = Cqq(Q2, Q2

0)

+ Cq

[
H(Q0, P

2) − Ccol
γ

]
e

∫ αs(Q2)
αs(Q2

0)
dλ

β(λ) Pqq

+ CU
γ + Ccol

γ , (A.13)

because Ccol
γ = α

2π
k(1)col

P
(0)
qq

. Let us now consider the limit

P 2 → 0 with Q2
0 being the scale below which the pertur-

bative approach has no meaning. As a consequence, the
perturbative expression (A.12) of H(Q2

0, P
2) is no longer

valid and we can only say that H(Q2
0, P

2) contains all
the non-perturbative contributions needed to define Fγ

2
in the real limit. Now we recognize in (A.13) the struc-
ture of the input proposed in formula (3.8) if we identify
H(Q2

0) = lim
P 2→0

H(Q2
0, P

2) to qNP(Q2
0) + qNP(Q2

0).

Expression (A.13) has been established in the virtual
factorization scheme. But we can easily obtain a similar
expression in the MS scheme by writing k(1) = k(1)MS

+
∆k(1) in the expression (A.2) for q(Q2, Q2

0). This change
generates a MS distribution qMS(Q2, Q2

0) and a term (cf.
(2.12))

− ∆k(1)

P
(0)
qq


1 −

(
αs(Q2)
αs(Q2

0)

)−2P (0)
qq /β0


 (A.14)

which is combined with Ccol
γ

(
1 −
(

αs(Q2)
αs(Q2

0)

)−2P (0)
qq /β0

)
of

(A.13) to give

C,MS
γ


1 −

(
αs(Q2)
αs(Q2

0)

)−2P (0)
qq /β0




so that (A.13) can be written in terms of MS perturbative
expressions, together with a non-perturbative contribution
H(Q2

0) which remains invariant under this change.

Appendix B

The parameterizations discussed in this paper are available
in the form of a FORTRAN code allowing the users to
select the parton distributions they are interested in. The
conventions we use are described in Table 1 which displays
abbreviations of the general notationAFG04(Q2

0, Cnp, p10).

Table 1. The values of Cnp indicated in brackets are the default val-
ues; the users can choose other values (after carefully reading Sect. 5).
These parameterizations can be downloaded from the site http://
www.lapp.in2p3.fr/lapth/PHOX FAMILY/main.html

Q2
0 = 0.34 GeV2 Q2

0 = 0.70 GeV2 Q2
0 = 0.97 GeV2

p10 = 1.0 AFG04 BF 1.0
(hard gluon) (Cnp = 0.78)
p10 = 1.9 AFG04 LW AFG04 BF AFG04 HG
(default) (Cnp = 0.60) (Cnp = 0.78) (Cnp = 0.84)
p10 = 4.0 AFG04 BF 4.0
(soft gluon) (Cnp = 0.78)
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